A General Asymptotic Theory for Maximum Likelihood Estimation in Semiparametric Regression Models with Censored Data.
نویسندگان
چکیده
We establish a general asymptotic theory for nonparametric maximum likelihood estimation in semiparametric regression models with right censored data. We identify a set of regularity conditions under which the nonparametric maximum likelihood estimators are consistent, asymptotically normal, and asymptotically efficient with a covariance matrix that can be consistently estimated by the inverse information matrix or the profile likelihood method. The general theory allows one to obtain the desired asymptotic properties of the nonparametric maximum likelihood estimators for any specific problem by verifying a set of conditions rather than by proving technical results from first principles. We demonstrate the usefulness of this powerful theory through a variety of examples.
منابع مشابه
A Sieve M-theorem for Bundled Parameters in Semiparametric Models, with Application to the Efficient Estimation in a Linear Model for Censored Data By
In many semiparametric models that are parameterized by two types of parameters—a Euclidean parameter of interest and an infinite-dimensional nuisance parameter—the two parameters are bundled together, that is, the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the u...
متن کاملA Sieve M-theorem for Bundled Parameters in Semiparametric Models, with Application to the Efficient Estimation in a Linear Model for Censored Data.
In many semiparametric models that are parameterized by two types of parameters - a Euclidean parameter of interest and an infinite-dimensional nuisance parameter, the two parameters are bundled together, i.e., the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the u...
متن کاملWeighted Empirical Likelihood in Some Two-sample Semiparametric Models with Various Types of Censored Data
In this article, the weighted empirical likelihood is applied to a general setting of two-sample semiparametric models, which includes biased sampling models and case-control logistic regression models as special cases. For various types of censored data, such as right censored data, doubly censored data, interval censored data and partly interval-censored data, the weighted empirical likelihoo...
متن کاملInterval Censored Survival Data : A Review of Recent
We review estimation in interval censoring models, including nonparametric estimation of a distribution function and estimation of regression models. In the non-parametric setting, we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators. In the regression setting, we focus on the proportional hazards, the proportional odds and the accele...
متن کاملInterval Censored Survival Data A Review of Recent Progress
We review estimation in interval censoring models including nonparametric esti mation of a distribution function and estimation of regression models In the non parametric setting we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators In the regression setting we focus on the proportional hazards the proportional odds and the accelerated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistica Sinica
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2010