A General Asymptotic Theory for Maximum Likelihood Estimation in Semiparametric Regression Models with Censored Data.

نویسندگان

  • Donglin Zeng
  • D Y Lin
چکیده

We establish a general asymptotic theory for nonparametric maximum likelihood estimation in semiparametric regression models with right censored data. We identify a set of regularity conditions under which the nonparametric maximum likelihood estimators are consistent, asymptotically normal, and asymptotically efficient with a covariance matrix that can be consistently estimated by the inverse information matrix or the profile likelihood method. The general theory allows one to obtain the desired asymptotic properties of the nonparametric maximum likelihood estimators for any specific problem by verifying a set of conditions rather than by proving technical results from first principles. We demonstrate the usefulness of this powerful theory through a variety of examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sieve M-theorem for Bundled Parameters in Semiparametric Models, with Application to the Efficient Estimation in a Linear Model for Censored Data By

In many semiparametric models that are parameterized by two types of parameters—a Euclidean parameter of interest and an infinite-dimensional nuisance parameter—the two parameters are bundled together, that is, the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the u...

متن کامل

A Sieve M-theorem for Bundled Parameters in Semiparametric Models, with Application to the Efficient Estimation in a Linear Model for Censored Data.

In many semiparametric models that are parameterized by two types of parameters - a Euclidean parameter of interest and an infinite-dimensional nuisance parameter, the two parameters are bundled together, i.e., the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the u...

متن کامل

Weighted Empirical Likelihood in Some Two-sample Semiparametric Models with Various Types of Censored Data

In this article, the weighted empirical likelihood is applied to a general setting of two-sample semiparametric models, which includes biased sampling models and case-control logistic regression models as special cases. For various types of censored data, such as right censored data, doubly censored data, interval censored data and partly interval-censored data, the weighted empirical likelihoo...

متن کامل

Interval Censored Survival Data : A Review of Recent

We review estimation in interval censoring models, including nonparametric estimation of a distribution function and estimation of regression models. In the non-parametric setting, we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators. In the regression setting, we focus on the proportional hazards, the proportional odds and the accele...

متن کامل

Interval Censored Survival Data A Review of Recent Progress

We review estimation in interval censoring models including nonparametric esti mation of a distribution function and estimation of regression models In the non parametric setting we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators In the regression setting we focus on the proportional hazards the proportional odds and the accelerated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistica Sinica

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2010